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1. Fundamentals of Turbulence

Fluid flows often exhibit laminar or turbulent patterns. Some key characteristics of these two types
of flows include:

e Laminar flows exhibit regular and organized patterns and the flow pathlines are in order. In contrast,
turbulent flows exhibit chaotic patterns, and flow pathlines are in disorder.

e In turbulent flows, there are eddies of different sizes interacting with each other.

e All flows (laminar or turbulent) must obey conservations laws of mass, momentum and energy.

1.1. Methodology for Studying Turbulence: from Leonardo da Vinci’s Painting to Osborne
Reynolds’ Ground-Breaking Experiment

Turbulence phenomena are the most challenging subjects in natural science which cannot be fully-
explained using any current established physical theories. Because a turbulent flow field features
chaotic behaviors, the instantaneous velocity and pressure field fluctuates significantly. Therefore, it is
important to study the flow statistics. Although efforts of mankind on understanding turbulence physics
can be traced back to Leonardo da Vinci (1452-1519, see Fig. 1), the modern scientific approach began
with the ground-breaking contribution of Osborne Reynolds (1842-1912, see Fig. 2), who conducted
the famous Reynolds experiment (1883) and proposed first statistical approach to study turbulence
(1895). As shown in Fig. 2, in the Reynolds experiment of a pipe flow, the flow starts to transition
from laminar to turbulent pattern once the Reynolds number* reaches its critical value (Rep =
% ~ 2300). Here, D is diameter of the pipe. The statistical approach introduced by Reynolds (1895)
is the so-called “Reynolds Averaged Navier-Stokes (RANS)” approach, which is still one of the
popular methods in turbulence study.

Interesting web links related to history of turbulence study:

Leonardo da Vinci: http://en.wikipedia.org/wiki/Da%5F Vinci

Osborne Reynolds: http://en.wikipedia.org/wiki/Osborne%5FReynolds

Turbulence images: Google image with key words: turbulent flows.

*The Reynolds number is defined as
UL UL
Re=22 22 (1)
1 v
where, U and L are characteristic velocity and length scales, respectively. The meaning of the Reynolds number is that
it represents the ratio of inertial forces over viscous forces:

_pUL pU? __ Inertial forces

Re (2)

s ps Viscous forces

Here, the strength of inertial forces is in proportion to pU?, and the strength of viscous forces is in proportion to ,u% (in
analogy to viscous shear stress 7,, = ui—’; for Newtonian fluids).

» The inertial forces are related to convection (indicated by U?), which tend to make the flow unstable (the higher the
speed U, the less stable of the flow) and facilitate turbulence.

» The viscous forces, on the opposite, tend to make the flow more stable and suppresses turbulence.
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Fig. 1: An Old Man and Turbulence. Leonardo di ser Piero da Vinci (April 15, 1452 — May 2, 1519),
an Italian Renaissance polymath: painter, sculptor, architect, musician, mathematician, engineer,
inventor, anatomist, geologist, cartographer, botanist, and writer. Source of figure: [3].
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Fig. 2: Osborne Reynolds’s ground-breaking experiment on laminar and turbulent flow. Osborne
Reynolds (August 23, 1842 — February 21, 1912), Fellow of Royal Society, Professor of Engineering at
Owens College in Manchester (now the University of Manchester). Source of figure: [4].

1.2. Reynolds Averaging and RANS

Following the approach of Reynolds (1895), Reynolds averaging can be used for extracting flow statistics
from a turbulent field. The simplest approach for performing Reynolds averaging is time-averaging. A
time-averaged (mean) velocity is determined as

1 T
uzTh—I};oT/(; udt . (3)

Here, an overbar is used to indicate a time-averaged quantity. With this mean velocity, an instantaneous
turbulent velocity field can be decomposed as

-~ /

u=1u+u'| (Instantaneous = Mean + Fluctuating) (4)
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Fig. 3: Reynolds averaging for processing instantaneous turbulent velocity and pressure fields. Both
@ and p are constant w.r.t. time, but their values may vary w.r.t. space, i.e. @ = u(r) and p = p(r).
Here, r is a position vector.

where u/ = u — @ is the fluctuating velocity component relative to the mean velocity 4. The decom-
position of instantaneous turbulent velocity and pressure fields are shown in Fig. 3. From the fig-
ure, it is evident that the temporally highly-fluctuating velocity and pressure, after time-averaging,
become two numbers which do not vary with time (but may vary with space). In other words,
both % and p are constant w.r.t. time, but their values can vary spatially (because Reynolds averag-

ing is performed w.r.t. time instead of space).

From the definition equation for Reynolds decomposition (i.e., Eq. (4)), it is straightforward to
obtain the following properties (based on two velocity components u and v):

wu=1u ,

a =uv -
T-0 (5)
w=w' = =0

Applying time-averaging to the product of two fluctuating velocity components v’ and v’, we obtain
the so-called temporal correlation of v/ and v/, i.e. w/v/, which is not necessarily zero. Later, this
term, u/v’, will be identified as a “Reynolds stress” component.

By applying Reynolds-averaging to continuity and N-S equations, the following set of two equations
that governs the mean flow fields (i.e., V = [, 9, w] and p) is obtained, viz.

Reynolds-Averaged Governing Equations for the Mean Flow Motion of Turbulence:

Continuity Equation: V-V =0 |,

DV
Momentum Equation: Por = ~Vp + V- Ty + pg (6)

Pressure Total shear Body
gradient stresses force

with the total shear stress given as

Ttot = Tvis T Tturb ‘ 5 (7)

where 75 is the viscous shear stress, and 7., is the turbulent shear stress. The appearance
of turbulent shear stress 7,1, is due to the convection term, and 7.1, is also often referred to as the
Reynolds shear stress (or simply, Reynolds stress).
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Fig. 4: Instantaneous vortex shedding pattern visualized using the instantaneous pressure for a
turbulent flow past a square cylinder. The instantaneous turbulent field features irregular vortices.
The instantaneous velocity field was generated using Direct Numerical Simulations conducted on
supercomputers by M. Saeedi and B.-C. Wang. Click the following two links for animations:
http://home.cc.umanitoba.ca/%7Ewang44 /Teaching/ MECH%203492/ Animations/lateral.wmv
http://home.cc.umanitoba.ca/%7Ewang44 /Teaching/ MECH%203492/ Animations/upview.wmv
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Fig. 5: Time-averaged streamlines and non-dimensionalized streamwise velocity contours for a turbu-
lent flow past a square cylinder. The time-averaged velocity field exhibits regular-patterned pathlines,
which can be interpreted as results of Reynolds averaging. Figures are made by M. Saeedi and B.-C.
Wang.

To demonstrate the Reynolds averaging effects, here we compare a turbulent velocity field before
and after time averaging. Figure 4 shows the vortex shedding pattern visualized using the instantaneous
pressure of a turbulent flow past a square cylinder. The instantaneous turbulent field exhibits energetic
and irregular vortices or eddy motions (you may click the web links given in the figure caption for
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animations). However, as shown in Fig. 5, after time averaging, regular-patterned streamlines appear
and the mean velocity field exhibits stable and organized flow structures. The above set of governing
equation can be used for predicting the mean velocity field shown in Fig. 5.

1.3. Eddy Viscosity

The viscous shear stress has been thoroughly studied in Chapters 2 and 3. It is represented by a tensor,
ie.

Texx Tyz Tzx
[Tvis] = | Tay Tyy  Tay : (8)

Tez Tyz Tzz

The viscous shear stress tensor 7is can be modelled using Stokes’ hypothesis, which assumes that

_ 9 9 _ 0 0 _ 0 0
e = 1 (32 4+ 22), =i (3 +5). re = (324 52). o

— — v | Ou — — ow 4 Ov — — (v 4 Ow
Txy—Tyx—N(am+ay)7 TyZ_TZy_M<8y+az>’ TZQC_TQCZ_M(@Z—’_ x)’

where p is the dynamic viscosity of the fluid.

Similarly, the Reynolds shear stresses are also represented by a tensor, which for an incom-
pressible flow, is defined as

—pu'u’ — pW — pW
[R] = [Tturb] = —pW —pw _pW ) (10)
—pw'v’  —pw'v!  —pw'w’

From this definition, it is understood that Reynolds shear stress components are, actually, temporal
correlations between two velocity fluctuations.

In full analogy to Stokes’ hypothesis for modelling s (see Eq. (9)), here we have the so-called
Boussinesq’s assumption for modelling the turbulent/Reynolds shear stress tensor Typ, Viz.

—pu = e (55 + 57) —p = i (53 + 52, —pw' = iy (92 + 92),

(11)
where p; is the so-called eddy viscosity of turbulence. The introduction of the concept of eddy
viscosity is the first step for “turbulence modelling”, which deals with the methods for modelling
the value of ;.

It should be indicated that unlike p (which is a molecular property of the fluid, and can be treated as
a constant at a given temperature), eddy viscosity u; is usually a variable w.r.t. space, i.e. | u = pi(r) |
Here, r = iz + jy+kz is a position vector. With Eqs. (9) and (11) (i.e. with the concepts of viscosity s

and eddy viscosity 1), the set of governing equations represented by Eq. (6) can be further expressed
as

Reynolds-Averaged Governing Equations (with Eddy Viscosity Model) for Turbulence:

Continuity Equation: V-V =0 |,
(12)

A\ )
=-Vp+ V- [(p+pm)VV] +pg

Momentum Equation: pﬁ
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Key features about this set of governing equations for turbulence:
e overbars for representing the mean fields (due to Reynolds averaging);

e /1 is the dynamic viscosity, which is a molecular property of the fluid. Its value can be treated as a
constant (at a given temperature);

e 1i; is eddy viscosity, which is not a molecular property of the fluid. Instead, it is a consequence of
turbulent eddy motions and interactions. Its value varies with space (because turbulent eddies are not
uniformly distributed in space), i.e. p; = pe(r). In other words, u; represents a hypothetic concept
that is invented to describe turbulent flow motions;

e The introduction of p is due to Stokes’ hypothesis for modelling 75, and in a full analogy, the

introduction of u; is due to Boussinesq’s assumption for modelling 7., (see, Eq. (9) and Eq. (11),
respectively).
e For laminar flows, u; = 0, and then, the above governing equations reduce to those familiar forms

used previously in Chapter 2 (i.e., p% = —Vp+ uV3V + pg).
e To deal with turbulence, just insert p; besides p in the N-S equation (simple!).

2. Boundary-Layer Theory

2.1. Viscous Flow and Boundary Layer

In 1904, Ludwig Prandtl (February 4, 1875 — August 15, 1953), a 29-year-old German professor at the
Technische Hochschule in Hanover, established the famous “boundary-layer theory” for investigating
a viscous flow over a solid surface. According the Prandtl, when a viscous flow passes over a solid
surface, a very thin boundary layer develops in the immediate vicinity of the solid surface where the
viscous forces dominate; however, above this thin boundary layer, the flow is dominated by inertial
forces (pU?) and can be approximately treated as inviscid.

For a viscous flow passing over a solid surface,

e within the very thin boundary layer close to the wall, the viscous force effect (or, viscous shear stress
Tyz = ,uz—;j) plays a dominant role. This is because in the vicinity of the wall, the flow speed is very low
(therefore, the inertial force pU? is very small), but the vertical velocity gradient Z—Z is large (therefore,
the viscous shear stress 7, is significant);

e above the thin boundary layer, however, the flow speed becomes much higher (therefore, the inertial
force pU? increases significantly), but the vertical velocity gradient Z—Z becomes much smaller (therefore,
the viscous shear stress 7,, decreases significantly). As such, the fluid can be approximately treated as
an inviscid fluid above the boundary layer.

In the vicinity of the wall, the viscous effects are dominant, which then have two consequences:
» enforcement of no-slip boundary condition right on a solid surface, and
» creation of a thin boundary layer near the wall.

In summary, major differences between inviscid and viscous flows in the near-wall region include:

e the concepts of “viscous shear stresses”, “viscous drag forces” T, “boundary layer” and “no-slip bound-
ary condition” represent the viscous effects and are applicable to viscous flows only. These effects are
absent in an inviscid flow.

e if the fluid is inviscid (u = 0), there are no such concepts called viscous shear stress, viscous drag
and boundary layer. Furthermore, on a solid surface, the boundary can slip (i.e., a flow may have a
finite speed right on a solid surface) in an inviscid flow.

tViscous shear stresses (e.8., Tww, Tyz, Tz2 etc.) represented by Eq. (9) exist everywhere in a viscous flow, i.e. they
are functions of space. The viscous shear stress acting right on a solid surface is referred to as the “wall friction shear
stress” (or, “skin friction shear stress”), i.e. Tw = Twan. The viscous drag force is defined as the integral of 7, over a
finite surface area of a finite object, i.e. Fip = fA TwdA.
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Fig. 6: A streamwise-developing laminar boundary-layer over a flat plate. Right at the inlet, the
free-stream velocity is U = U, and hits the leading edge of the flat plate with zero incidence (i.e.,
parallel to the plate). Along the BL, the free-stream velocity profile above the BL is a function of x,
ie. U="U(z).

2.2. Boundary-Layer Equations

Figure 6 shows a streamwise-developing laminar boundary layer after a uniform viscous flow (with
inlet speed Uy) passes a flat plate with zero incidence (i.e., parallel to the plate). In order to study
the dynamics of this boundary layer, there are two approaches, i.e. differential approach and integral
approach, which lead to the so-called boundary-layer differential equations and boundary-layer
integral equations, respectively. In the remainder of this subsection, we study these two types
boundary-layer equations.

2.2.1. Boundary-Layer Differential Equations

For a steady laminar boundary layer (BL) shown in Fig. 6, we assume that the flow is 2-D. Therefore,
the BL differential equations can be derived from the general 3-D governing equations addressed in
Chapter 2. Furthermore, to make the analysis simple, we consider a BL: free from body forces:

Continuity Equation: @ + @ =0 ,
or 0Oy
Ou  Ou\_ _Op (0w 0Ou 13
. P\ "oz U@y o TP\ aa2 Oy? (13)
Momentum Equation:
P\ "oz dy) Oy F\ 922 Oy?

In 1904, Prandtl introduced the boundary-layer theory based on the following boundary-layer as-
sumptions:

e Inside a BL, the flow is treated viscous; but outside of the BL, the flow is treated as inviscid.

e Inside a BL, it assumed that the magnitudes of the velocities and velocity gradients follow:

Velocities: uw>v

14
Velocity Gradients: g—; > % , g—: > % , (14)

Therefore, in the z-momentum equation in Eq. (13), gi% = a%(g—;) > Lu = a%(%), and it can
simplified to
ou ou dp 0%u
p< ) _ % (15)

oz Moy
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As for the y-momentum equation in Eq. (13), we have

v v dp 0%v 0%v
- ) =_== . -— 16
<u8w+ 8y> 8y+u< 0z +8y2 ’ (16)
NI S~
small small very small  gmall

which can be further simplified by neglecting the small and very small quantities to

dp

3y 0| or, |p=p(z)|only. (17)

This equation clearly indicates that the pressure does not change in the vertical direction in a
BL.

Differential Equations for A Steady Laminar Boundary-Layer

du 0
Continuity Equation: — + — Y =0 ,
or Oy
2
Momentum Equation: v Y ox
oy
The above z-momentum equation for a steady laminar BL can be also written as
ou ou ou  or
el =) = U= = 19
p<u8x+08y> PY 0w +8y ’ (19)
with the viscous shear stress defined as 9
U
- — . 20
T= 1, (20)

To derive the above BL z-momentum equation represented by Eq. (18) (or, Eq. (19)) from Eq. (15),
we further used a conclusion —d—p = pU . According to Prandtl’s BL assumption, the flow outside
of the BL can be treated as an anISCId ﬂuid (including the edge of the BL). Therefore, using the
knowledge learned from Chapter 3, for an inviscid flow, along a streamline, Bernoulli’s equation can be
used for determining the pressure. Furthermore, as mentioned earlier, we are analyzing a simple BL
free from body forces. Therefore, right along the edge of the BL (which is a streamline), Bernoulli’s
equation reads

U2
p+ pT —C . (21)
Differentiate both sides of this equation w.r.t. x to obtain
dp dU
U— =0 22
or,
dp dU
=pU—| . 23
Cdo dx (23)

Because within a BL, dp/dy = 0 (see Eq. (20)), it is now clear that p only changes with z, and dp/dz is
the only pressure gradient component within a BL. This equation indicates that the pressure gradient
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dp/dz inside a BL can be figured out using the free-stream velocity U above the BL. As shown in
Fig. 6, right at the inlet, the free-stream velocity is U = U,. Along the BL, the free-stream above the
BL is treated as an inviscid fluid and its velocity profile is a function of x only, i.e. m

» From Eq. (23), it is understood that the only reason that the free-stream velocity U changes w.r.t.
x is because of the pressure gradient g—ﬁ.

» For a zero pressure gradient (ZPG) boundary layer, Z—z = 0, and therefore, U = U(z) = Us. The
reason that U does not change along the streamline in a ZPG BL is because the free-stream above the
BL is treated as an inviscid fluid according to Prandtl’s BL theory, and as a result, there is no head
loss in the free-stream above the BL.

» Within the BL, the flow is treated as a viscous fluid, and of course, viscous shear stresses exist and
cause head losses. The velocity profile v within a BL varies with « and y, i.e. |u = u(z,y) |

2.2.2. Boundary-Layer Thickness and Integral Parameters

(1) Boundary-Layer Thickness

As shown in Fig. 6, the BL thickness keeps growing (monotonically) along the plate, and is a function
of the streamwise distance, i.e. |d =d(x)| The velocity profile u = u(z,y) is zero at the wall and

keeps increasing in value as the elevation increases (i.e., as y increases). Right at the outer-edge of the
boundary-layer (at elevation y = 0), u approaches the free-stream velocity, i.e. u = U. However, in
order for u to reach U asymptotically, the BL thickness § can be very large in some cases. Therefore,
in practice, we often use an alternative BL thickness definition, which specifies the outer-edge of a
BL as the vertical position where

u=0.99U . (24)

We denote this alternative BL thickness as “dgg”.

(2) Displacement Thickness

Figure 7 shows a streamwise developing BL over a flat plate. Between the plate and the streamline
shown in the figure, the mass flow rate (per unit depth) is constant, meaning that the mass flow rate
at inlet (x = 0) is equal to the that at the outlet (z = L), i.e.

)
pUh = / pudy + pU(K — 6) (25)
0

which can be further rearranged to

U=U

-
U=Uy)<U
0 . S . N | 7%

L

Fig. 7: Schematic demonstration of the cause of the displacement thickness (6*) of a boundary layer.
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Define the displacement thickness as
=h-h |, (27)

then we obtain 5
pUs" = [ o~y (28)
0

5*:/5(1—%)@ : (29)

If y>6,u=U and 1 — 7 = 0. Therefore, we can also express displacement thickness §* as

or,

o0 0

5*:/000<1—%)dy:/05(1—%)dy+ % dy . (30)

Physical Meaning:
e Because of the existence of the BL, the velocity u is smaller than the free-stream velocity U. This

is to say, as shown in Fig. 7, the streamline needs to be pushed out (or, “displaced”) vertically from
position h to position A’ in order to maintain mass conservation.

e The concept of displacement thickness is purely due to the requirement of mass conservation.

e The difference between h and A’ is exactly the displacement thickness, i.e. §* = h' — h (see Fig. 7).

(3) Momentum Thickness

Figure 8 analyzes the momentum balance over a finite control volume ABCD in the context of a
streamwise developing BL over a flat plate. The z-momentum fluxes (per unit depth) across the
boundary (4 sides) of the control volumes are shown in the figure, viz.

across side AB: MAB:/ pU%dy |
0
across side BC:  Mpc =U - / p(U —u)dy
0 (31)
across side CD: MCD:/ puldy
0

across side DA: Mpy =

U= u)<U
— —

Fig. 8 Schematic demonstration of the cause of the momentum thickness () of a boundary layer.
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The explanation of the above equations is straightforward.t The net rate of loss in the z-momentum
(per unit depth) for an incompressible viscous flow over the control volume is, therefore,

Momentum Loss = MAB — MBC — MCD

:/ pU2dy—U-/ p(U—u)dy—/ puldy
0 0 0

:/OOOP[U2—U(U—u)—u2]dy (34)
:p/ooou(U—u)dy
Define parameter 6 such that
pU?6 = Momentum Loss = p/ooo uw(U —u)dy (35)

which can be further rearranged to

0:/000%<1—%)dy , (36)

which is referred to as the momentum thickness of a BL. Because u = U if y > 4, the integrand is
essentially zero for y > §, resulting in: |, 500 U (1 — %) dy = 0. Therefore, we can also express momentum

thickness 6 as
)
U U
0 = —(1-—= .
/0 7 (=) (37)

Physical Meaning;:

e Because of the existence of the BL, momentum decreases as the viscous fluid flows downstream.

e The momentum thickness 6 describes the momentum loss due to the existence of BL.

e The “amount” of momentum loss equals to the momentum carried by a flow layer with thickness 6
at the inlet (before the BL starts to develop, where the free stream velocity is U).

The velocity is uniform and constant at the inlet (AB), viz. u = U; but because of the existence of the BL, u = u(z, )
is a variable at outlet (CD). The mass flow rates (per unit depth) across AB and CD are

mAB:/ pUdy and mCD:/ pudy (32)
0 0

respectively. There is no mass flow across of the solid plate surface (DA), i.e. m,, = 0. Therefore, the balance between
the mass flow rates at the inlet (AB) and outlet (CD) has to go across the top boundary (BC), i.e.

Mo =/ pUdy—/ pudy:/ p(U—w)dy . (33)
0 0 0

At BC, the velocity is U, therefore, the momentum across BC is Mpc =my, -U =U - fooo p(U — u)dy.
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Fig. 9: Analysis of mass and momentum balance over a control volume (of a finite-height from 0 to
) a-b-c-d in a boundary layer. Streamwise, the wall friction shear stress is 7,,, and over the control
volume (dx), the pressure increases from p to p + dp.

2.2.3. Boundary-Layer Momentum Integral Equation (pp. 428-433)

In subsection 2.2.1, the BL differential equations (i.e., Eq. (18)) have introduced, which govern the BL
flow motion from a differential (local and infinitesimal) point of view. In this subsection, we introduce
the BL integral equation, which study the momentum balance of the BL flow from an integral point of
view over a finite BL height 0.

(1) Mass Balance
Figure 9 shows the mass balance over a control volume (CV) a-b-c-d. The mass flow rates (per unit
depth) across each sides are:

6
across side ab: 1, = My, = / pudy
0

dring d ([°
across side cd:  1heg = Mgy + ialulc = Mg + — / pudy | dx | (38)
dx dz \ Jo

across side da: 1y, =0

Due to mass conservation, the mass flow rate across side bc is

d §
across side bc:  mpe = Mg — Mah = o </ pudy) dr . (39)
T \Jo

(2) Momentum Balance (BL Integral Equation)
Similar to the mass balance analysis presented above, as shown Fig. 9, the z-momentum (per unit
depth) across the four sides of the control volume are:

6
across side ab: My, = M, = / puldy
0

d 4
across side be: My, =1y - U =U - — </ pudy> dx  (based on Eq. (39)),
0

dx (40)

dM, d ([°
across side cd: Mg = My, + dr = My, + — / puzdy dx
dx dx \ Jo

across side da: My, =0
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According to Newton’s second law, the z-momentum change is due to the two external forces (per unit
depth), i.e. the streamwise pressure forces and the wall friction forces. As shown in Fig. 9, the net
pressure forces is [(p+dp) —p|-d = dp- 0, and wall friction forces is 7, - dz. The z-momentum balances

as
External forces Momonttj{n change 0
—dp-5—7‘w ~dx = ZMout _ZMm = Meq — Map _Mbc_%
e (o] pwe
0
d 6 d §
= — (/ puzdy> de —U - — </ pudy) dx
dx 0 dx 0
or,

dp d ., d 0
Ty = — —U-— . 42
' T 0 (/0 - dy) V' </0 pudy (42)

From Eq. (23), it is understood that the streamwise pressure gradient within the entire BL follows

—Z—g = pUCfi—g. Also, we recognize that 6 = f05 dy. Therefore, the above xz-momentum balance equation

can be further expressed as

du [° d (% d ([°
=L vz . 4
pU T /0 dy — T </0 U dy> de —U . </0 pudy) (43)

Because the free-stream velocity U = U(z) (which does not vary with y), we further obtain

du [ d ([ d [ [°
o B L4 , 44
T, T /0 pUdy . < /0 U dy) +U . < /0 pudy> (44)

Because of the product rule of calculus,’ the last term in the above equation can be expressed as

d J d J dU J
U ge () mtn) = g [ ([ o) | =+ () o)
d dU

5 5 (46)
=—</ pUudy)——/ pudy
dz \Jo
with which, Eq. (44) can be rearranged to
au [ d ([° d ([° au [°
w = —— dy — — 2d — dy) — — d 4
T depUy dx(/opu y>+dw</0pUuy> dx/opuy, (47)
or,
T d [ [0 au [?
— = — U —u)d — U—u)d 48
e L [ wa] + 5 [ (18)
and further as s s
T d U U dU U
Y= — U = (1-=)d U— 1——)dy . 49
p da:[ /OU< U>y}+ da:/0< U)y (49)
$In calculus, the product rule for differentiation follows:
d _¢. 99 4 g _d o 4
e =r 2ty o o fom= o (frg) -9 o (45)

In this special case, f =U and g = foé pudy.
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Considering the definition of displacement thickness ¢* and momentum thickness 6 of a BL (defined
by Eq. (29) and Eq. (36), respectively), the above equation becomes

Tw d 2 dU
L= (U%0)+5U—| .
@ (U?0) +6"U T (50)

which is the so-called BL momentum integral equation. It is also often referred to as the Karman
integral equation, in honor of Theodore von Kérmén (1881-1963), a Hungarian-American mathemati-
cian, aerospace engineer and physicist (von Kdrman obtained his Ph.D. degree under the supervision of
Ludwig Prandtl at the Univ. of Géttingen in 1908, see http://en.wikipedia.org/wiki/Von%20Karman).
This equation reflects overall momentum balance over a finite BL height, i.e. how the momentum of
the fluid changes in the streamwise direction after being integrated vertically over BL thickness §. The
physical meaning of this equation is clear: the momentum loss (% (U 29)) is caused by the balance
from the wall friction shear stress (%w) and the streamwise pressure driving force (6*U4Y, recall that

dx’
dp __ dU

The BL momentum integral equation represented by Eq. (50) can be rearranged to

T df aUu dU
LU= 4 20U— + 65U — 51
p dx * dx + dx (51)
or,
Cy df 0 dU
7_%+(2+H)E_w , (52)
where C is the local skin friction coefficient defined as
T,
Cr=-—|, 53
f %pU2 ( )

and H is the shape factor defined as the ratio between the displacement and momentum thicknesses:

H=7| . (54)

2.2.4. Application of the BL Momentum Integral Equation with Zero-Pressure-Gradient
(pp. 433-438)
As shown previously in Eq. (18), in a BL, the y-momentum equation degenerates to g—y = 0. This means

that in a BL, pressure p does not vary in the y direction but may still change in the x direction (i.e., %
can be non-zero). In this subsection, we study a special case so-called zero-pressure gradient BL
(ZPG), which further demands that % = 0. Therefore, in a ZPG BL, % =0 and g—g = 0. An example
of a ZPG is a flow over a flat plate, whose free-stream velocity U and pressure p are both constant
(before and outside of the BL), i.e. U = Uy and p = peo.

(1) Local Wall Friction Stress 7,, and Friction Coefficient C/

From Eq. (23), it is understood that in a ZPG BL flow, _3_5 = pUCfi—g =0 or Ccll—g = 0. The BL

momentum integral equation represented by Eq. (51) can be, therefore, simplified to

T_“’:U2d_9

) 7| (55)
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which can be further rearranged to

Cy df
A 56
2 dz (56)
Substituting the definition of the momentum thickness into Eq. (55), we obtain
do d [°u u
2 2
A Y (A PP
T =0 pdeoU( v) W (57)
Define non-dimensional vertical coordinate
)
== 58
”7 5 Y ( )

we get dy = ddn, and the momentum integral equation for a ZPG BL represented by Eq. (57) becomes

do ds [t u U
2 2

U— = pU*— —(1——= .
dz 7 4z o U ( U) i (59)

(2) General Velocity Profile and Boundary Conditions

In order to determine, e.g. 7, using Eq. (59), it is necessary to specify the profile for ;. We assume the
velocity profile of the BL flow, after being non-dimensionalized, is self-similar and takes the following
general functional form:

u L (Y
==f(%)=rm (60)
The boundary conditions for a BL flow are
aty=0: (Dirichlet B.C.)

u=20
aty=0: u=U (Dirichlet B.C.)
0
3~

Boundary conditions:

<

aty =0: 0 (Neumann B.C.)

(3) A Solution for a Laminar ZPG BL

e Step 1 Determine the velocity profile:

As shown in Eq. (61), there are three boundary conditions for a BL flow. Therefore, we can assign max-
imum three degrees of freedom to a BL velocity profile. Following von Kédrméan, one of the possibilities
is to assume that the velocity profile is a polynomial of y, i.e.

u=a+by+cy® . (62)

By applying the three boundary conditions (given in Eq. (61)) to the above velocity profile, the three
coefficients can be determined, viz.

U U
CZZO, b:2g, 62_5_2 (63)
The velocity can then be expressed as
U U,
u = 231/ - 5—211 ) (64)
or, in a non-dimensional form as
U Y (YN 2
s (3)' -
7=25 5 n—n (65)
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e Step 2 Determine the wall friction shear stress:

Once the velocity profile is obtained, we can calculate the wall friction shear stress 7,,. The calculation
of 7, can be based on the dimensional velocity profile (i.e., Eq. (64)), or the non-dimensional velocity
profile (i.e., Eq. (65)). The following calculation of 7, is based on the non-dimensional velocity profile

. _M@ _IuUﬁ(u/U) B ﬂd(u/U) (66)
v oy =0 50(y/0) y/6=0 5 dn =0 ’
By substituting Eq. (65) into the above equation, we obtain
wU d 9 nU 2uU
w = ——(2n — =—1(2-2 =— .
T 5 dn(2n n°) s (2—2n) s (67)

e Step 3 Determine the BL thickness ¢:
Substituting the results of 7, and 7 (i.e., Egs. (67) and (65), respectively) into the momentum integral
equation for a ZPG BL (i.e., Eq. (59)), we obtain

2uU 5 do Ly U
5 P U(l U)d”

55 (68)
= U / (2n —=n?) [1 = (20— n*)] dn
L Jo
or,
2uU ds [*
= pU’— / (20 — 5”4+ 4° —n')dn . (69)
5 dfll' 0
Integrating and substituting the limits yields
2uU odd 2
— =pU"—— . 70
5 " dx1s (70)
or,
154
0dé = ——d 71
i ()
which is an ordinary differential equation for J. Integrating again gives
5% 15p
" 72
5= rrtC (72)

Assuming that the boundary layer starts at the leading edge of the flat plate, i.e. § =0 at x = 0, then

we have C' = 0. Thus,
30px
0= . 73
Vo0 (73)

This result shows that the laminar BL thickness grows as /z, i.e. it has a parabolic shape. Define

Reynolds number as

Re, = % , (74)

and this result (i.e., Eq. (73)) can be further expressed as

A4
g =4 /% = 5R—Sx (approximate solution) . (75)
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e Step 4 Determine the local skin friction coefficient C'y:
From the definition of Cy, we have

o 2uU/s 4 1 Re,

R (76
5pU? spU%  pUd pUx 6 Re, 5.48

or,
Cr= 0'_;36(1 (approximate solution) . (77)

The above solutions for % and Cy (given by Eq. (75) and Eq. (76), respectively) are approximate
solutions obtained based on the crude assumption that the velocity profile is a special quadratic
polynomial of y (cf. Eq. (62)). However, this approximate result is very close to (only 10% higher
than) the following exact solution to the BL momentum equation

.664
Cy= 0.66 (exact solution) . (78)

v Re,,

Without giving detailed derivations, this exact solution was first developed by Paul R. H. Blasius (1883-
1970) in 1908, professor of Ingenieurschule Hamburg, Germany. Blasius was one of the first Ph.D. stu-
dents of Ludwig Prandtl (see, http://en.wikipedia.org/wiki/Paul%20Richard %20Heinrich%20Blasius).
Also, in the exact solution of Blasius, constant ‘5.48” in Eq. (75) needs to be replaced with ‘5.0’, such

that o_ 50
v /Rey |

In comparison with Blasius’s exact solution, it is understood that our approximate solution repre-
sented by Eq. (77) depends on the assumption of the non-dimensional velocity profile 1 for the laminar
BL flow. Table 9.2 (from the textbook) well-summarizes the approximate solutions based on different
assumptions on the polynomial profiles of the non-dimensional velocity .

Table 9.2

Results of the Calculation of Laminar Boundary-Layer Flow over a Flat Plate at Zero Incidence
Based on Approximate Velocity Profiles

Velocity Distribution Constant a in Constant b in
g ~ 1) — 1t p=? & oy 0 f G- —
g f\e 55 ~ 0 x Re " VRe
ftn) = 1 1 3.00 3.46 0.577
6 2
fn) =2n = o’ 2 1 2.50 5.48 0.730
15 3
1
fln) = %n— 5 U 39 3 2.69 4.64 0.647
280 8
fln) =2n =27 + 1" 37 3 2.55 5.84 0.685
315 10
. m
f(n) = sin (_ q;) d—1 T2 266 4.80 0.654
2
27 T
Exact 0133 0344 2.59 5.00 0.664
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e Step 5 Shape factor:

Table 9.2 includes other parameters such as the displacement thickness 6*, momentum thickness 6 and
shape factor H. Here we continue our solution based on the special quadratic polynomial of y (cf.
Eq. (62)) by determining these parameters.

Displacement thickness §*:

o= [ - p)w=s [ (- )

1
= 5/0 [1—(2n—n%)]dn (79)

Y

1
or, % =3 Once the BL thickness § is known, the displacement thickness 6* can be calculated

accordingly. Specifically, from Eq. (75),
o* 1 5.48 1.83

— 80
T 3 \/Re:p v Re, (80)
Momentum thickness 8:
0 = 1 - — d =4 1 —
/0 7 ( ' / @
= 5/ (2n—n*) [1 = (2n—n*)] dn (81)
0
2
=9
15
0 2 .
o s =1-t From Eq. (75), we further obtain
0 2 54 7
_ 2 5.48 _ 0.73 ' (82)

r  15Re, +/Re,

From Eqgs. (79) and (81), it is understood that for the assumed polynomial laminar BL flow (cf. Eq. (62)),

§>0">0 . (83)

U U=U0)

H]

Fig. 10: Comparison of the BL thickness §, displacement thickness * and momentum thickness 6
calculated using the BL integral equation based on the assumed polynomial laminar BL velocity profile
given by Eq. (62), i.e. u = a+ by + cy?.
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The relationship between these three thicknesses of the BL is shown in Fig. 10.

Shape factor H:
o* 1 2 5
7= (50) ) (550) =325 @

2.3. Laminar-to-Turbulent Transition BL over a Smooth Flat Plate

Thus far, we have focused our discussion on laminar BLs. As shown in Fig. 11, when flow passes
over a flat plate, a laminar BL starts from the leading edge and its thickness § = d(z) keeps growing
in the streamwise direction (as z increases). The Reynolds number Re, = LUZ also increases as

increases. As the BL grows, it becomes less stable. The exact Reynolds number at which the BL flow

transitions from laminar to turbulent pattern depends on many parameters such as surface roughness,
disturbances and pressure gradient. In literature, the critical Reynolds number for transition is
about Rey = 5 x 10° ~ 3 x 10% for a BL developed over a smooth flat plate. The upper limit on Re,,
for a BL flow past over a smooth flat plate to remain laminar is 3 x 10.

In summary, a BL flow over a flat plate experiences three stages of development in the streamwise

direction: laminar BL, transition BL and turbulent BL.

—— . Lamnpr BL Transitten BL - Twrbudent BL

T | [r—— = —— ‘ L" e Ee—

SE—-—— |

— \ ——— T | tuterlnyer

= o=l
R A 1=

e U il = L -} 0 Ové/riap lower
- g Ty | = ’

==t =% (P e A = [ Buffer Lage,

e e S m 2= B Sm ) T viscous sl
0 \ !

J_.H ¥ — [ransi ¥imm PC/’P/LZ.‘, Criticel /90:‘/1/?,‘ there BL

b, NN o) / . ]
Lram s,/ Hons T}/ﬁ?ﬂ LAm) nanr Lo Torbud o

Fig. 11: Structure of a streamwise developing boundary layer over a flat plate, which transitions from
a laminar to a turbulent boundary layer.

2.4. Fully-Turbulent BL

In the previous sections, we have thoroughly studied the behaviour of laminar BLs. Study of the transi-
tion BL involves knowledge on not only viscous fluid dynamics but also stability theory, which is beyond
the scope of this class. Here in this subsection, we focus our attention solely on the turbulent BL (i.e.,
here we only study the fully-turbulent BL far downstream of the critical streamwise transition point
shown in Fig. 11).
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2.4.1. Approximate Analytical Solution for a Turbulent ZPG BL based on the BL Integral
Equation (pp. 439-440)

Similar to the previous approximate analytical solution for a laminar ZPG BL using the BL integral

equation (cf. subsection 2.2.4), the BL integral equation can be also used for studying a turbulent BL.

It should be indicated that when we derived the BL integral equation, no assumption has been made

on whether the flow should be laminar or turbulent.

In full analogy to the previous ZPG laminar BL solution presented in subsection 2.2.4, we begin

with the BL integral equation (Eq.(55) or Eq. (59)), i.e.
do as (tu U

=2 = [ 2 (1= ) an 59

=P =P T ) (59)

Furthermore, similar to the assumption made for the laminar ZPG BL velocity profile (cf. Eq. (62)),

we also need to make an assumption for the turbulent ZPG BL velocity profile. In literature, it is

popular to assume that a turbulent ZPG BL velocity profile follows the one-seventh-power law, viz.

OME g

In comparison with the laminar ZPG BL solution presented in subsection 2.2.4, a major difference

between a laminar and a turbulent BL is in their assumed velocity profiles, represented by Eq. (62) and
Eq. (85), respectively. It is understood that both these velocity profile equations are just assumptions,
and therefore, solutions from the BL integral equation based on these assumed velocity profiles may
deviate from the exact solutions (recall that the exact laminar BL solution is Blasius’ solution). A
significant flaw in the assumed turbulence BL velocity profile (represented by Eq. (85)) is that this
one-seventh-power law holds in the entire turbulent BL except for the immediate vicinity of the wall,
because it predicts that

U

=W ‘7 SL/7 y6/7 — 0 (86)

y=0

which is not realistic. In order to fix the problem, we use the fully-developed velocity profile of a
turbulent pipe flow to calculate 7, for this case of a turbulent BL over a flat plate. This is, of course,
another assumption. It is based on the fact that wall friction shear stress in a fully-developed pipe flow
is similar to that in a fully-developed turbulent BL over a flat plate. As such, we have the following
wall friction shear stress

_ 2 (VW
T = 0.0233pU (U I (87)
which directly leads to the following result on the local skin friction coefficient
Tw v\ 1/4
Cr= = 0.0466 ( — . 88
f % pU2 < Ud ) ( )

By substituting the assumed profiles for ¢ (cf. Eq. (85)) and 7, (cf. Eq. (87)) into the integral
equation (59), we obtain

/4 ds ! 7 dS
02 2 (VT @9 YT _ Uy — 40
0-0233pU (U&) da:/o (L= )dn 72 dx (89)
Integrating gives
= _0.240<U> z+C . (90)
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If we further assume that 6 = 0 at « = 0 (this is equivalent to assuming that the turbulent BL flow
starts from the leading edge of the plate), then C' = 0 and

5_0382(0,)1/ a5 (91)

45 In comparison,

Note that the above equation shows that the turbulent BL thickness grows as x
from the previous discussions (see Eq. (75)), we know that the laminar BL thickness grows as \/x.

Similar to the laminar result (Eq. (75)), the above result on turbulent BL thickness can be rearranged

to
) /5 10.382
= = 0.382 (Uw> = | (92)
Substituting the above result on § into Eq. (88), we obtain
0.0594
Cr=—75 (93)
Rey Rel®

Similar to the previous results for a laminar BL (Eqgs. (79-84)), for a turbulent BL, once the velocity
profile is specified (i.e., once the one-seventh-power law (cf. Eq. (85)) is assumed), parameters such as
displacement thickness 6", momentum thickness 6 and shape factor H can be readily calculated.

5*:/05(1_%)@:5/1 1_g)d7,
_5/ n/7)d (94)

Displacement thickness 0*:

8 9
o 1 . .
or, 5 =8l Based on Eq. (92), displacement thickness 6* can be expressed
0" 10382  0.0478
—= gRe}Cﬁ = Re}cﬁ . (95)
Momentum thickness 6:
é 1
U U U U
0= —(1—-=)=4¢ —(1—-=)d
/0 U ( U) /0 U ( U) g
1
= 5/ 771/7 [1 — 771/7} dn (96)
0
7
=—0
72
0 7 .
or, | =5t From Eq. (92), we further obtain
0 382 0.0371
— = 7038 = . (97)

T T2 Rel/P €L/

H= %* = <%5> / (7—725> = g —1.286 . (98)
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2.4.2. Turbulent BL Structure and the Law-of-the-Wall

As shown in Fig. 11, vertically, a turbulent BL can be divided into two distinct regions:

(TI) inner layer, where the flow significantly influenced by the wall viscous effects; and

(IT) outer layer, where the wall effects are almost non-existent and the flow behaves like a wake.
Within the inner layer, three layers can be further identified:

(i) viscous sublayer;

(ii) buffer layer;

(iii) overlap layer (also referred to as the “logarithmic layer”).

The turbulent BL structure and physical properties of each layer are summarized as follows:

viscous sublayer: viscous shear stress 7y;s dominates, and turbulent shear stress
Tourb 18 negligible;

buffer layer: both viscous shear stress 7yis and turbulent shear stress 7,1, are

Inner layer: ) o )

important, and they are of similar magnitudes;

overlap layer: both viscous shear stress 7yis and turbulent shear stress 7,1, are

L important, but the magnitude of 7,1, is much larger than that of 7y;s.

Outer layer: turbulent shear stress 7,1, dominates, and viscous shear stress 75 is negligible.

The velocity profile of a turbulent BL can be described using the so-called “Law-of-the-wall”
based on the following wall coordinates:

Y= ; (99)

where u* is the so-called “wall friction velocity”, defined as

Tw
wr=,/— . (100)
p

Using the u*, the velocity of the BL flow can be non-dimensionalized as

(101)

With the wall coordinates defined above, the velocity profile of a ZPG turbulent BL in the inner layer
can be generalized using the following functional relationship

ut=fy")| - (102)

» In a ZPG turbulent BL, the viscous sublayer exists for 0 < y™ < 5. Within the viscous sublayer,
the non-dimensional velocity profile can be described using the following linear functional relationship

ut =yT| (for0 <yt <5). (103)

» Immediately outside of the viscous sublayer, the buffer layer exists within 5 < y* < 30. The non-
dimensional velocity profile u™ within the buffer layer mostly relies on curve fitting, because an ana-
lytical formula is not readily available for describing the relationship between u™ and y*.
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» Immediately outside of the buffer layer, the overlap layer exists for y™ > 30 for a ZPG turbulent BL,
and the non-dimensional velocity profile follows the so-called logarithmic-law for the overlap layer.

1
ut = - Inyt +5.0[ (for y™ > 30). (104)

where, | k = 0.41 | is the “von Karman constant”.

» Outside of the overlap layer is the outer layer, where the turbulent shear stresses dominate, and the

influence from the wall on the velocity is negligible in this region. In the outer layer, the flow behaves
like a wake relative to the free stream and cannot be well represented using the wall coordinate (which
relies on the wall friction velocity u*). The discussion of the outer region shall be skipped as it is
beyond the scope of this class.

30
Res, = 15,000 (Wieghardt IDENT 1400) \Oodp
. 0
Res, = 1500 {Johnson (1989)]
20 - |
ut =2441Iny* + 5.0
ut i
10 o “ Inner layer |  Outerlayer
ut = a
Viscpe sublayeLL Buffer layer ‘OverlaplayeL
0 T T r:l!1[ T IV:‘Illlll IV 'III!II‘ T T T T TT1TT7T
1 > 10 0 100 1000 10,000
y+

Fig. 12: The law-of-the-wall for a fully-developed ZPG turbulent boundary layer (source of figure [7]).

von Karman’s Two-Layer Turbulent BL Model

In order to further use Prandtl’s mixing-length theory to the analysis of a steady fully-developed ZPG
turbulent BL, von Karmén proposed a two-layer turbulent BL model, which assumes that a turbu-
lent BL consists of only two layers: the viscous sublayer and the overlap layer (or, logarithmic layer).
The buffer layer and outer layer are not included in consideration. In this two-layer turbulent BL model
of von Kdrmdn, the “transition” from the viscous sublayer to the overlap layer occurs at y* = 10.8.
Figure 13 shows the simplified turbulent BL structure based on the two-layer model of von Karman.
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U

=~ lnyteso

|
wt=yt/

yt=08  ayt

Fig. 13: von Kérman’s two-layer turbulent BL model for a fully-developed ZPG turbulent boundary
layer. It assumes that a ZPG turbulent BL consists of only two layers: the viscous sublayer and the
overlap layer. The buffer layer and outer layer are not included in consideration. In this two-layer
turbulent BL. model of von Karmén, the “transition” from the viscous sublayer to the overlap layer
occurs at yT = 10.8.

2.4.3. Turbulent BL Differential Equations

To investigate the a turbulent BL flow, it can be useful to check its z-momentum equation. The z-
momentum equation for a laminar BL flow represented by Eq. (19) and Eq. (20) needs to be modified

to
_du _ou oU  OTiot
JEE— —_ g _ —_— 1
p<uagj —H)ay) pU e + 3y | (105)
with
ot = Tuis + Tourb = O — gl (106)
tot — Tvis turb — Nay P .

where @ and v represent the Reynolds-averaged velocity fields.

Comments:

» The above z-momentum equation for a 2-D turbulent BL flow is similar to that for a 2-D laminar BL
flow (i.e., Eq. (19)), expect that 7, now consists of two parts: viscous and turbulent shear stresses.
» The above z-momentum equation for a 2-D turbulent BL flow is fully-consistent with the 3-D
turbulent flow case described by Egs. (6) and (7). Just that in a 2-D turbulent BL flow case, only 1
of the 9 components of the viscous shear and Reynolds shear stress tensors is needed (i.e., ,ug—g and

—pu'v’, respectively).
From the previous discussion of Boussinesq’s assumption (cf. Eq. (11)) for 3-D turbulence, the
concept of eddy viscosity can be also used here for a 2-D turbulent BL flow, which leads to

0
— 0 ou ou
urb = — ya— —_— ~ —_— s 107
Turb = —pu'v’ = iy (%Jr 8y> g (107)
where p; is the eddy viscosity for modelling the effects of turbulent motions. Owing to the BL as-

sumption % < g_Z’ % can be ignored in Eq. (107). With the introduction of eddy viscosity for
modelling turbulent shear stress based on Eq. (107), the total shear stress represented by Eq. (106)

can be expressed

ou
Ttot = Tvis + Tturb = (:u + Nt)a_y . (108)
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Similar to Eq. (12) for 3-D turbulence, the z-momentum equation for a 2-D turbulent BL represented
by Eq. (105) can now be further expressed as

_Ju ~ _oOu ou 0 ou
p<ua—x + va—y> = pU% + 3y [(M + Mt)(‘?—y} . (109)

Differential Equations for A Steady Turbulent Boundary-Layer

( Continuity Equation: @ + @ =0 ,
oxr 0Oy
ou ou ou 0 ot
P<ﬂ3—u + @a—u> =Uo-+ 5 [(u + m)a—u] ) (110)
Momentum Equation: N y . Yy Yy
o _
oy

2.5. Boundary Layer Separation (pp. 442-445)

2.5.1. Role of Pressure Gradient in a BL

In the previous subsections, we have thoroughly studied laminar and turbulent BL flows under zero
pressure gradients. In this subsection, we further examine the role of a pressure gradient in the BL
development. As discussed previously, based on Prandtl’s BL theory, the vertical pressure gradient is

always zero in a BL, i.e. 2—5 = 0. Furthermore, because g—g = —pU % holds within a BL, specifying
j—i is equivalent to specifying %. Depending on the value of the streamwise pressure gradient Z—i, we

have the following three types of streamwise pressure gradients:
e Favorable Pressure Gradient (FPG): g—i < 0 and Ccll—g > 0;

e Zero Pressure Gradient (ZPG): g—g =0 and Ccll—g =05

e Adverse Pressure Gradient (APG): g—i > 0 and % < 0.

Figure 14 shows how the pressure gradient along a BL can be changed by using a channel with
a variable cross-sectional area. The relationship between pressure p and the free-stream velocity U is

Region 1 Region 2 Region 3
dp ; ap
ox < 8 @ =0 ox ~ 0

-

————— & (x) - Backflow
=

Separation point: @] =0 )
dV y=0

Fig. 14: Boundary-layer flow with three types of pressure gradients in a channel with a variable cross-
sectional area.
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governed by Bernoulli’s equation.

» In region 1, the cross-sectional area decreases, and as such, the flow speeds up due to mass conser-
vation. As a result, the pressure drops along the streamwise direction, forming a FPG BL.

» In region 2, the cross-sectional area remains constant, and therefore, both the flow velocity and
pressure do not vary along the streamwise direction, resulting in a ZPG BL.

» In region 3, the cross-sectional area increases, causing the flow to decelerate and form a APG BL.

2.5.2. BL Separation Condition

As shown in Fig. 14, in region 3, if the magnitude of the APG is large enough, the BL. may separate
from the wall, accompanied with a reverse flow pattern (i.e., u < 0) in the vicinity of the wall, a negative

wall friction shear stress (i.e., 7, = ug—Z\yzo < 0) and a negative local skin friction coefficient (i.e.,
Cy =1u/(3pU%) < 0).
» Right at the BL separation point (see Fig. 15(d)), the following BL separation conditions hold:

ou
Tw=0, Cp=0, —| =0| . 111
! 3,0 (111)

» In a FPG BL, the pressure keeps dropping and the flow keeps accelerating in the streamwise direction.
The flow cannot reverse its direction, BL never separates, and 7, > 0.

» In a ZPG BL, from Table 9.2 (see page 47), Cy = f}% > 0 (Blasius’ exact solution), the flow never
reverses in the near-wall region, and BL never separates.

» In an APG BL, the BL may separate, but not guaranteed. This is because the sign of 7,, depends
also on other parameters than just the pressure gradient. In effect, from Eq. (52),

Cr do 0 dU
&=t @+ (52)
From this equation, it is understood that the sign of Cy (or the sign of 7,,) depends upon not only
the pressure gradient (indicated by %), but also the shape factor H etc. Figure 15 gives a detailed
description of the BL development under FPG, ZPG and APG. In Fig. 15(c)-(d), the BL is subjected
to an APG, but the BL separates only when the APG is severe enough. This further confirms that
APG is a necessary but not a sufficient condition for BL separation.
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- U(x)
v] - Ux) R
. Ulx) = ! =
y ) > | | T o i ) e i
U(x) Ulx) i .
> il e -
5 NS e 0(X)  f—p,
] P L :
r——| | >/ FEd T Reverse flow
8(.1\‘) = 11 o(x) /{ ‘ L . el
l _r/ - ¢ \\
e B | N — 3
Ty A Ty & Ty ! Ty = 0 ’ Ty *
(a) FPG (b) ZPG (c) Mild APG (d) Critical APG (e) Strong APG
<0, >0 =0, =9 >0, <o >0, <o >0, <o
Tw >0 Tw >0 Tw >0 Tw =0 Tw <0
No separation No separation No separation Separation point Separated region

Fig. 15: BL velocity profiles under different pressure gradients g—z = —pUd (source of figure [6]).
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Good online teaching on BL development and separation:
https://www.youtube.com /watch?v=LvVuuaqCC7A
https://www.youtube.com/watch?v=el TbkLIDWys
https://www.youtube.com/watch?v=60-RbD1tlhs
https://www.youtube.com/watch?v=JcxOub0E4aA
https://www.youtube.com/watch?v=fCniTNB20NQ
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Class Example

Purpose: understanding BL thickness, displacement thickness, momentum thickness, and integral equa-
tion

For a zero-pressure-gradient laminar BL flow over a flat plate, assume that the velocity profile is of
a sinusoidal form: u = a + bsin(5¥%) + ccos(5%). Derive all the equations and parameters listed in
row 5 of Table 9.2. Specifically, determine: (1) f; (2) Tw; (3) non-dimensionalized BL thickness % (as
a function of Re,); (4) C (as a function of Re;); (5) %; (6) %; and (7) shape factor H = %*.
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Problom 2 [ Follow s steps on PP, M1 of the avtes]
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Problem 9.23 [Difficulty: 2]

9.23 Laboratory wind tunnels have test sections 25 cm square
and 50 cm long. With nominal air speed U; = 25 m/s at the test
section inlet, turbulent boundary layers form on the top, bot-
tom, and side walls of the tunnel. The boundary-layer thickness
is &; = 20 mm at the inlet and & = 30 mm at the outlet from
the test section. The boundary-layer velocity profiles are of
power-law form, with w/U = (v/6)"’. Evaluate the freestream
velocity, Us,, at the exit from the wind-tunnel test section.
Determine the change in static pressure along the test section.

Given: Data on wind tunnel and boundary layers
Find: Uniform velocity at exit; Change in static pressure through the test section
Solution:
J ’ V2
. fs — - u p
BaSIC. _ pd¥ +I pV-dA =10 (4.12) 5disp = (1 - U) dy Z 4 7 + g-z = const
equations ~ of JCV cs Jo p
Assumptions: 1) Steady flow 2) Incompressible 3) No friction outside boundary layer 4) Flow along streamline 5) Horizontal
1
u 7
For this flow p-U-A = const an u_ry
d U )
. . m 2 2
The given data is Up = 25— h = 25.-cm A=h A =625-cm
S
We also have 81 = 20-mm 8~ = 30-mm
5
( 1 o
5 oo L 6
u y 7 y
Hence Sien = 1-—=|dy= 1-|< dy = & 1- d wher =< Siep = —
disp J ( U) y J (8) y JO n ./ . =% disp = g
0 0
Hence at the inlet and exit
8 L)
Sdispl = 5 dgispy = 25mm Sdisp2 = g dgispz = 3-75-mm
2 2
Hence the areas are Al = (h - 2'5displ) Aq = 600-cm
2 2
Ay = (h — 2:84igp2) A, = 588-cm
Applying mass conservation between Points 1 and 2
(-pUpAg) + (pUgAg) =0 or U, = Uy L U, = 2552 =
p-¥1 A1 p-Y2:A2 2 1 A, 2 P
2 2
_ . P Uy P2 Uy : kg
The pressure change is found from Bernoulli —_ — = — 4+ — with p=121—
p 2 p 2
m
Hence Ap = B.(Ulz - UZZ) Ap =-15.8Pa  The pressure drops slightly through the test section
2
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